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Classical Random Walks
as Dynamical Systems

Space: Transition Matrix: Initial State:
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Source: Wikipedia- Random Walk



Unitary Quantum Random Walk

Example. (Hadamard Walk)

Actson H = H: @ Hp = C* ® £,(Z) by
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where h:ﬁ(i _11> and SEZ\T,n+1)<T,n|—+—|J,,n—1)(¢,n|.
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Universal Quantum Computation

| Y1)

| 2) Ny

o) — (] B —

| 000;,) [ DA% a0 W W w w W e & W w % | 000,,)
| H A l\
[UMB IS S S B S S s g
L 4

| 010im) X DX X XX X, A K W W K | 010,u)
| H Pl /.\

|01150) %7 [ e 0T e e w8 el e w e | 0llou)
g

:'i_‘x | UOI out>

| 1004,) & L o8 w0 e W e e | 1000y
i rs
H o 2 ) P
- - \." . T O i T s T i = /e oy -~ S
| 101,) | [w N, W W W e W W K[ 1015y)
i o " -
A, w

|1104,) * T  pf 4 ~ax e, A KKK | 1100u¢)
5 P i &3 = -x_ — ,-/’ S ——
| 111 m) \"1 . s . T __l.____,'\\ )\._ﬂ | Hlout}

o
Source: Universal quantum computation using the discrete-time quantum walk, Lovett et. al. 2010




Implementation in Linear Optics
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Source: Experimental realization of a quantum quincunx by use of linear optical elements, Do et. al. 2005



Entropy

We have a classical system whose macrostate is described by the probability measure

p = (plr P2, '"rpk) .

After measuring the system N times, we expect to see:

e 1st microstate: p;N times
2nd microstate: p,N times

kth microstate: p;, N times
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Entropy Rate

Stochastic Process: X = (X;,)n=1

Entropy Rate: H(X) = lim lH(Xl,XZ, e, Xp)

n—-oon

— 1 k
= lim Zil,iz ,,,,, inU(Pil,iz ..... in)

n—>00

Markov Process: H(X) = lim lH(Xl,Xz, s Xp)

n-oon
_ vk K
= 2i=1Di 2j=11(®ji),
where p = (p4, P>, ..., Px) IS an invariant measure.

Unbiased Random Walk: H = {";1% ?zln(pju)

= log2



SZ Quantum Dynamical Entropy

Dynamical System: (Schrodinger Picture)
(O, T, p) where 0(-) = U - U*, p € S;(H) and T(A) -= T;e4 P; - Ps.

Probabilities: p;,;, ;. = tr(T(in) o © © T(in_1) © -0 0 0 T(i1)p)

SZ Dynamical Entropy: h5%(6,T, p) = imsupnc = Siea(Piyiy,...r)

Theorem 1. (Androulakis, Wright)

Let ® = Hadamard walk on N-cycle He ® Hp = C*> ® CV,
and T = (P)n-1 WithB, =1 ® |[n)(n|, andp = ]1/2[\-‘T.

Then hSZ(®,T,p) = log?2 Nonlinear in time: In classical dynamical entropy

: we have

4 KS — nKS(fn
and hSZ(G)Z,T,p) = §]0g 2. nh (f) h (f )



AOW Quantum Dynamical
Entropy

Dynamical System: (Heisenberg Picture)
(cfl, @*, ¢) where @*(:) = U*- U and ¢ € S(A).

Quantum Markov Chains: .
y=(P)L,, E:My ® A — A definedby E() _ |i)(jlAi;) = ZPAHP

ij=1
The Markov state ¢, € S(MC?N) is given by

oo (aray - ay) = G(E (a1 X E(az & - E(ap-1 ® E(a, ® 1.4) ))))
Let p,, € Mc(ign satisfy ¢oo(a1a2 an) - tr(pnIE(al & - E(an X 1c/l) ))

AOW Dynamical Entropy: n49%(e*,y, ¢) = limsupy_.. = S(p,)
where S(p) = tr(n(p)) is the von Neumann entropy.




SZ=A0OW Dynamical Entropy

Theorem 2. (Androulakis, Wright)

Given a dynamical system
(@, T, p) or (cﬂ,@*,(,b),
h°%(0,T,p) = h4°%(0"y,¢).

Proof. p; ;i = tr(T(iy) @0 T(in_q) o000 T(i1)p)
= 11 (T(in-1) © © 0 T(in_3) © -+ © © o T(iy)pE(E; i, ® 1,4))

tr (T(il)pIE(Eiz,i2 Q E ( E(Einrin ® 10‘1))))
tr (pIEI(Eil,i1 Q E(E;,;, ®E ( E(Einrin ® 1ﬂ)))))

pn(il, i2, LX) in; il, iz’ ) in)



Compressability of Data

C
OBJECTS = S > CODEWORDS c A* =uU%,{0,1}"

The Source Code Cis uniquely decodable if its extension C*: ST - A*

C*(x12xp - xn) = C(x1)C(x3) -+ C(xy)
is one-to-one, for all n.

Kraft-McMillan Inequality.

Any uniquely decodable code with codeword lengths €4, ¥5, ..., £;, must satisfy
the inequality yn o 27ti< 1,

Conversely, given lengths that satisfy the above inequality there exists a uniquely
decodable code with those lengths.




Optimal Lossless Codes

Shannon’s Noiseless Coding Theorem.

Given a random variable X, the optimal source code C satisfies the inequality
HX)<L(C)<HX)+1,

where L(C) = E[?(x)] = Y,es p(x)€(x) is the expected length of C.

Corollary.

Given a stochastic process X = (X, )=1, the optimal source code C,, for the strings of
length n satisfies the inequality

H(Xy, Xo, o, Xn) < L(Cy) < H(Xy, Xg, ) X)) + 1.

Therefore average expected length per symbol L}, = %L(Cn) is given by

1
H(X) = lim—H(Xy, Xy ., X,) = lim L, =: L

n-on n—-oo
In particular, if X has i.i.d. copies of a random variable X, then
H(X) = L* = HX).



Compressing Quantum Data

U
OBJECTS = § C H; > CODEWORDS ¢ HY = @3, HO"

where § = {pn, |sn) }n_ is an ensemble of states in Hg = span{|s,,)} = C%
and Hy = C* =span {|0), |1)}.

The Quantum Source Code U is uniquely decodable if its extension U™: ng - Hf

U™ (xyx5 - xp) = U(x)U(x5) - U(xy)

is a linear isometry, for all n.

We define the length observable A € B(Ho?) by

Ymax
A = Z fng
£=0

where II, is the orthogonal projection onto the subspace Hf?f C Hf.
The quantum codeword length of |w) = U |s)for each |s)€ Hy is given by

w)) = (w|A|lw) .



Quantum from Classical

Let C: S — A" be a classical uniquely decodable code with |S| = dim(Hs). Then
for any orthonormal basis {|e;) }_, of Hs,

d
U="> |C(x:)eil
i=1
is uniquely decodable. Furthermore, the quantum codeword lengths for|w) = U |s)

are given b d
& Y {[|w:} = {u,' ;I|!||.|...:..rlkF — Z |:ig'_-‘_!-|5}|2 {‘!
i=]1

Theorem 3. (Quantum Kraft-McMillan Inequality, A-W)

Any uniquely decodable code U must satisfy the inequality
tr(UT2740) < 1.
Conversely, if U: Hg — Hd? is a linear isometry with length eigenstates satisfying the

above inequality, then there exists a uniguely decodable quantum code (of the above
form) with the same number of length £ eigenstates, for each £ € N.




Optimal Quantum Lossless Codes

j\r
LetS = {pu, [Sn) toy and p = > pulsa) (sal.
n=1

Suppose p has spectral decompositior(}

p = Zf%|ﬁi><ﬂi|-
1=1

Theorem 4. (Bellomo, Bosyk, Holik, Zozor 2017)

The optimal classical-quantum source code is given by
d
U= 1c)(pi
1=1

where {c(i)} is the classical Huffman code for the probabilities {p;}.




Optimal Quantum Lossless Codes

Theorem 5. (Bellomo, Bosyk, Holik, Zozor 2017)

The average length of the optimal quantum source code satisfies the inequalities
S(p) < ¢(T(p) < Slp)+1,

['() =U-Utand ¢(T(p)) = tr(T(p)A).

Corollary.

The average length of the optimal quantum source code for the i.i.d. ensemble §®"
satisfies the inequalities

nS(p) =S(p®") < ¢ (Fn(p®")) < S(p®") +1=nS(p) + 1.
Therefore lim = ¢ (F (p®")) = S(p) = h4%%(0%,y, ¢), where y = (lpi){pil ),

n-oon

©®* is the Bernoulli shift on MC?N and ¢(asa, ---a,) =tr (p®"[E(a1 Q- E(a, ® 14) ))

Open Question. can the above result relating the average length per symbol be

extended to include a stochastic ensemble $* = {Pn,,....n,., [S152 - - Sg)}m =17

.....



Optical Communication Process

ALICE A BOB
p € S;(H) > 5151'1)
a p
5. @ K) - - S,(HQK)
Where ap) =p ®v

for some noise v coming from the noisy channel and

B(p) = trg(p).



Optical Communication Process

Example.
ALICE BOB
A
p € S1(Hp) > S1(Hp)
a B
51(Hp @ Hc) o > 51 (Hp ® Hc)

Where ©(-) = U - UT is the Hadamard walk on the N-cycle given by the unitary
U=5p ®h),alp) =p v where hv =v,and (@) = try.(¢).

Letting p = 1p/N, T; = (P)N_, where P, =[n)(n|, and T, = (Q,)N_; where
Q. =|n)(n|&Q 1., we find that

h32(A, Ty, p) = h32(0, T, p @ v).



Thank you!

See my paper at arXiv:1810.05746 [math-ph]



